Science and Engineering at Yale.*
World-class research and undergraduate education come together at Yale.
Science and Engineering Leadership in an Age of Opportunity

Scientists and engineers ask profound questions about the way things work. Here you will find innovative and creative leaders who push forward for answers, combining their pioneering research with the special capacity for teaching that has always been treasured at Yale.

We seek science and engineering students who want to make a decisive impact on society, and we will prepare you to manage the explosion of knowledge taking place in every important domain of research. Whether you plan to live on the frontiers of astrophysics or geophysics, life sciences or nanotechnology, you owe it to yourself to investigate Yale science and engineering.

Richard C. Levin, President of Yale University
Research with a capital “R” is about discovering something that nobody else has ever known. Yale undergraduates have that opportunity, since so many are doing their own research as early as the summer after their freshman year. The process of doing real science here is a bit like an apprenticeship, where students learn by doing, from professors, other students, and other scientists. While working with and learning from scientists at the forefront of some of today’s most exciting research, they become part of the world’s scientific community.

Axel Schmidt
Hometown Pittsburgh, PA
Major Physics Intensive. (The Physics major has two tracks: B.S. and B.S. Intensive. The latter is designed for students who want to continue on to graduate school, while the former offers more flexibility for students who want to complete the pre-med curriculum, double-major, or combine physics with another field like philosophy or astronomy.)

Extracurriculars Purple Crayon improv comedy, intramural sports, Peer Health Education

Why Yale “I chose Yale over a more technical university because I wanted a peer group that had a broader range of academic interests. I also wanted to be taught English, history, and music by professors who were leaders in those fields as well. If I were to make that choice again knowing what I know now, I would choose Yale for those reasons but also because at Yale, science majors are a little less common. We get special treatment for it. I was given a huge amount of support—academic and financial—to pursue research from the moment I got here. That has been the most valuable thing that Yale has offered.”

Post-Yale Plan “I’m headed to graduate school next year, to get a Ph.D. in physics. I haven’t made up my mind about where I’m headed, but I did get into MIT, Duke, Columbia, and Yale, so I have terrific options.”

Atomic Sweat

“Science is fundamentally about research. Regardless of how many classes you take or how much math you learn, you haven’t really done science unless you’ve poured sweat into your own lab project, computer program, or solar-powered robot. I had the tremendous opportunity to start working in a laboratory the summer after my freshman year, and in that time, I found that I love doing science. Research wasn’t about grinding out problem sets, but getting to tackle puzzles that nobody had ever seen or thought about before. It was about getting to ask the questions that I thought were interesting and important. On top of that, in classes from then on, I started thinking about questions like ‘How would one measure that in the lab?’ Or ‘What kinds of experiments make use of this principle?’

“My research explores the structure of atomic nuclei. I am hoping to explain how removing neutrons from a heavy nucleus changes its structure from largely spherical and stable, to deformed and unstable. In my experiments, I measure the gamma rays emitted from nuclei created in Yale’s particle accelerator, and then use these measurements to recover the excited states of these nuclei.

“In my sophomore fall, I went with the rest of my lab to a conference and presented my research from the previous summer. Here I was, a sophomore, being asked questions by leaders in the field from all over the country. It was an amazing experience, and I made sure I went back to that conference every year after that. If I hadn’t done research, I never would have glimpsed the larger scientific community, and where I fit in.”
Driving Curiosity

“There’s something about going out and trying to answer a novel question, or collect new data on something that’s never been studied before, that’s so rewarding and makes me feel like I’m making contributions to something new. Lab research has been very important not only in giving me hands-on experience, but also in showing me that I enjoy it. Perhaps most importantly, I’ve learned that I can do research and that I’m less concerned about my prospects as a researcher in the future. The lab that I work in does terahertz (THz) spectroscopy, which is a kind of vibrational spectroscopy. The project I’m working on is the study of single-crystal and polycrystalline amino acids using this and another technique called Raman spectroscopy to look at collective vibrations of molecules in a lattice.

“Learning in a lab is so much more proactive than the classroom. Something is interesting, and so you go and learn about it. Your own interests drive your curiosity, which I find makes learning much easier.”

Benjamin Ofori-Okai and professor of Chemistry Charles Schmuttenmaer

Sunjin Lee

Hometown Vancouver, WA
Major Molecular Biophysics and Biochemistry
Extracurriculars “Aside from scientific research, I love to pursue my interests in classical music. I play oboe with a couple of different chamber groups and orchestras, and also enjoy playing in pit orchestras for operas.”

Why Yale “Beautiful campus, amazing people, and countless opportunities for anything and everything you could possibly be interested in. Yale also had one of the best financial aid packages among all of the schools I had to choose from.”

Post-Yale Plan “I will be pursuing a career in translational research, which bridges gaps between basic science and clinical medicine.”

Opposite page:

Benjamin K. Ofori-Okai

Hometown Albany, NY
Major Chemistry
Extracurriculars Yale Anti-Gravity Society, Pierson College Master’s Aide, Pierson College Butterly, Association of Undergraduate Chemistry Students, Society of Physics Students

Why Yale “I chose Yale because I can dedicate the rest of my life to science, but not necessarily to all the other things I am interested in. Some of my greatest learning has come from the conversations with my friends who major in history, philosophy, and classics.”

Post-Yale Plan “I am going to graduate school to earn my Ph.D. with the goal of becoming a professor.”

Bio-Prospecting

“Yale without my rain forest research would have been a very different place. Almost no one goes bio-prospecting for endophytes in the Amazon rain forest. So my mentor, Professor Scott Strobel, a world leader in understanding catalytic reactions triggered by RNA, knew the students in his ‘Amazon Rain Forest Expedition and Laboratory’ were likely to find things no one else had seen.

“What we discovered blew us away. We returned with ten species of fungal endophytes that we have been able to classify as an entirely new genus. Even more exciting for me was that, once we got back to the lab, I discovered that an extract from one of these fungal endophytes reduces inflammation in human tissue. A subsequent analysis of the molecule revealed it to be an inhibitor of apoptosis, or programmed cell death. It may also lead to drugs that could prevent preterm birth – something we’re continuing to investigate both in the lab and with further prospecting in Ecuador.

“I’ve had multitudes of opportunities to present this research in all sorts of settings, including informal lab meetings, undergraduate symposia, professional conferences, general public and classroom talks, and even a talk for the president of the University and his council on international affairs. In addition, I have been working on publishing my results in scientific journals. In all of these endeavors, I have had support and encouragement from my faculty advisers.

“My research experience has absolutely been an invaluable and integral part of my undergraduate education here. It’s also had a direct impact in defining my future goals.”

Sunjin
Lee Christoffersen

Hometown: Littleton, CO

Major: Environmental Engineering, Intensive and Geology, Natural Resources

Extracurriculars: Research assistant, tour guide for School of Engineering & Applied Science, sustainability coordinator, student chapter of Engineers Without Borders, founding member of Yale’s chapter of Society of Women Engineers

Why Yale: “I thought I wanted to study astrophysics. When I visited Yale, the college set up a personal meeting with Professor Meg Urry. This renowned scientist took me out to lunch! I’ve had the opportunity to take classes in the humanities and social sciences—classes taught by really incredible professors. Scientific fields are inextricably tied to politics, the economy, and social values. It’s vital to understand these other factors.”

Post-Yale Plan: “I am interested in the environmental aspect of the mining industry. I’ve had three summer internships focused on the topic. I’ve worked on the design of a tailing storage facility, environmental and social impact assessments, closure plans, and acid rock drainage treatment.”

Engineered Solutions

“Leading Bulldogs Racing—Yale’s 20-person team that annually designs, constructs, and races a vehicle in the intercollegiate Formula Hybrid International Competition— is one example of how I was able to push my research interests at Yale. As team president and head of the electrical systems group, I had the fun and privilege of managing the design and fabrication of a gasoline- and battery-powered racecar for a design challenge sponsored by the Society of Automotive Engineers.

“Our team had to integrate the electrical and electronic components of the vehicle—including the microprocessor, motor controller, sensors, and dual-voltage power system—with the internal combustion engine to produce the fastest energy-efficient racecar.”

Opposite page:

Jonathan Biagiotti

Hometown: Greenwich, CT

Major: Electrical Engineering

Extracurriculars: Intramurals, working out in the gym, skiing, tinkering, traveling

Why Yale: “Because at Yale I could get a diverse education. I knew I wanted to major in engineering, so it had to be a school with a great engineering program, which Yale has. I also wanted to learn other things though, like history and economics, for which Yale also has great programs. I also really liked the small residential college system, and the proximity to New York City.”

Post-Yale Plan: “I will be working at IBM Microelectronics. I hope one day to own my own technology-related company.”

“Getting Your Hands Dirty

“When I was a sophomore, I was looking for a campus job. I went to the chair of the Chemical Engineering department and asked what was available. He told me that the policy of the department was to give a research position to every student who wanted to participate. That’s a pretty incredible thought—that Yale has the resources and the faculty support to encourage every undergrad to do research.

“I worked with Robert McGinnis on forward osmosis desalination for two years. Rob, a Yale doctoral student in Environmental Engineering, is revolutionizing the industry. While at Yale he started a company that uses the new technology he’s developed. I feel lucky to have been a part of that. Beyond the intellectual benefits of participating in a working laboratory, I learned about the importance of humility in research. Rob and I were doing important work that I truly believe will be a viable technology within the decade. It has the potential to change the way we think about potable water. However, our experiments could be thwarted by a simple leak. I spent so many hours clambering over our prototype, tightening bolts.

“That’s what research is all about—having the intellectual prowess to problem-solve in an efficient and innovative way, but also having common sense and a willingness to get your hands dirty. Persistence is important.”

Lee
Breaking News.
(A few of the year’s top undergraduate science and engineering stories)

Fighting Malaria with Texts

Yale senior Regina de Luna has forged a partnership with the Philippines’ Globe Telecom and Shell Philippines to use text messaging to educate the population about how to fight malaria, the eighth-leading cause of death in the nation. The country is known as the “texting capital of the world,” according to de Luna. Her program includes text reminders such as “It’s time to hang up your bed nets” and “Don’t forget to get your bed net re-treated with insecticides,” as well as information about the common symptoms of malaria and what people can do if they think they have the disease. “By using cell phones and computers, I can be engaged in this effort remotely, from New Haven,” says de Luna.

Students Invent Skin-Imaging Device

A skin-imaging device invented by three Yale undergraduate engineering majors has earned the students nation-wide recognition. Juniors Elizabeth Asai, Nicholas Ander, and Sarah Demas, have received the fourth annual Project for Innovative Technology (PIT) grant.

Students Honored for Water Project in Cameroon

A five-year Yale Engineering undergraduate student project to bring clean water to the Kikoo community in Cameroon, Africa, has received the Premier Project Award from Engineers Without Borders—USA. The Yale team designed the gravity-fed water distribution and storage system and partnered with the community and the Yaoundé School of Public Works to build both the water system and ventilated improved pit (VIP) latrines.

Discovery of Amazon Fungus That Eats Plastic

Yale undergraduates Priya Anand, Jeffrey Huang, and Jonathan R. Russell have discovered a fungus growing in the Amazon rain forest that breaks down plastic, including polyurethane. The students made the discovery while participating in Yale’s Rain Forest Expedition and Laboratory course, funded by the Howard Hughes Medical Institute, and have had a paper accepted by the journal Applied and Environmental Microbiology. While other organisms can also degrade plastic, the students’ discovery is promising because this fungus can break down plastic in the absence of oxygen—which means that the discovery may be useful in attacking buried trash.

Student Team Ties for Best Biosynthetic Project

A Yale team of eight undergraduates achieved a tie for Best Food or Energy Project in the International Genetically Engineered Machine competition (iGEM). The team—which includes students majoring in Biochemistry, Biomedical Engineering, Chemistry, Economics, Ecology & Evolutionary Biology, Mathematics, Molecular Biophysics & Biochemistry, and Molecular Cellular, & Developmental Biology—engineered a new insect antifreeze protein that may have applications in cryopreservation of food, cells, and organs, as well as in cryosurgery and agriculture. iGEM is the premiere undergraduate competition in synthetic biology.

Undergraduate Women in Physics Conference

More than 180 students representing fifty-two institutions attended the three-day Yale-hosted Northeast Conference for Undergraduate Women in Physics. Organized by the Yale student group Women in Physics with assistance from Yale professors Meg Urry, Bonnie Fleming, and Sarah Deemer, the program included talks by established women physicists, panel discussions about graduate school and careers in physics, and student research presentations. Professor Urry notes that “at Yale, the percentage of physics majors who are women is roughly double the national average. In my view the conference is a big reason why.”

Beyond Our Solar System

The booming field of exoplanet discovery is the subject of one of Yale’s newest undergraduate courses, offered for the first time in spring 2013 by the department of Astronomy in collaboration with the department of Geology & Geophysics. The course studies the physics of planetary orbits and current exoplanet detection techniques, recent progress in the characterization of exoplanet interiors and atmospheres, and the implication of these findings for our understanding of planet formation and evolution.

Senior Project Rings Bells

Mechanical engineering major Joel Brink won the award for best demo at the 2012 Haptics Symposium in Vancouver—an international forum for research on touch in human-computer interaction—for the haptically accurate practice carillon he built for his senior project at Yale. The expressiveness of music played on a carillon is achieved through variations in touch, which must practice carillons cannot simulate. Brink, who began playing Yale’s 43-ton, 54-bell Franko Memorial Carillon as a freshman, developed his practice instrument using software models of carillon dynamics in combination with such rapid prototyping tools as laser cutters and 3-D printers that create molds for complex geometries.

Student-Run Company Honored

SilviaTerra, a forest inventory management start-up co-founded by Yale computer science major Max Uhlenhuth and School of Forestry & Environmental Studies graduate Zack Parisa, was named one of the “best 50 student-run companies in the world” by the Kairos Society. SilviaTerra software uses a complex mathematical algorithm to determine the species and number of trees in a given area based on spectral and radar satellite imagery in combination with ground plots. Last year, it was named the “most promising green tech company of the year” by the Connecticut Technology Council.

Freshman Summer Research Fellowships

Research and design projects are a critical part of undergraduate science and engineering education, and opportunities need to be available when students are making decisions about major and potential careers. To that end, Yale has announced a new Freshman Summer Research Fellowship program. In the summer of 2013, nearly $500,000 will be provided support for at least 10 science and engineering freshmen, with funds for full-time research, summer programming, and enhanced guidance and support for finding mentors, developing proposals, and making a successful entry into research.

Undergraduate Research Fellowships

Fellowships are also available for the summer following the year in which students graduate. Many student research projects are also supported by individual faculty research grants. Fellowships are available for study in specific areas such as environmental issues, cancer-related research, biomedical engineering, and international research in applied science.

Student Groups (sponsoring)

Aerial Robotics Research Group
AKED (Yale chapter of American Institute of Chemical Engineers)
American Indian Science and Engineering Society
American Institute of Chemical Engineers
BMES (Yale chapter of Biomedical Engineering Society)
Ecology and Evolutionary Biology Undergraduate Group
Engineers Without Borders
MATHCOUNTS Outreach
Math Society
Medical Professions Outreach
Minorities in Medicine Movement
Minority Association of Pre-Medical Students
National Society of Black Engineers
Phi Alpha Theta Public Health Coalition
Society for Biological Sciences
Student Emergency Medical Services
Student Engineering Design Team
Student Task Force for Environmental Stewardship
Y-IEEE (Yale chapter of IEEE)
Yale Student Entrepreneurial Society
Yale Scientific Magazine
Yale Student Environmental Coalition
Yale Student for Environmental Engineering and Sustainability
Y-IEEE (Yale chapter of Institute of Electrical and Electronics Engineers)
Y-USA (Yale chapter of the American Institute of Chemical Engineers)
American Institute of Chemical Engineers
BMES (Yale chapter of Biomedical Engineering Society)
Ecology and Evolutionary Biology Undergraduate Group
Engineers Without Borders
MATHCOUNTS Outreach
Math Society
Medical Professions Outreach
Minorities in Medicine Movement
Minority Association of Pre-Medical Students
National Society of Black Engineers
Phi Alpha Theta Public Health Coalition
Society for Biological Sciences
Student Emergency Medical Services
Student Engineering Design Team
Student Task Force for Environmental Stewardship
Y-IEEE (Yale chapter of IEEE)
Yale Student Entrepreneurial Society
Yale Scientific Magazine
Yale Student Environmental Coalition
Yale Student for Environmental Engineering and Sustainability
Y-IEEE (Yale chapter of Institute of Electrical and Electronics Engineers)
Y-USA (Yale chapter of the American Institute of Chemical Engineers)
Top 10

Among university faculties in National Academy of Sciences membership, in fields ranging from evolutionary biology to biochemistry to physics.

70

Undergraduate each year for the last five years have coauthored published research.

$1 Billion

In new monies for science, engineering, and medical research facilities since 2001.

93%

Undergraduate courses taught by professors or lecturers (the remaining 7% are chiefly in foreign languages and freshman English).

80+

Yale College graduates awarded National Science Foundation Graduate Research Fellowships in the last three years, recognizing their potential for significant achievement in science and engineering research.

$1 Million

Funding for undergraduate science research fellowships in the most recent year.

95%

Undergraduate science and engineering majors who do research with faculty members.

1:1

Yale’s School of Engineering & Applied Science has approximately 60 professors and graduates approximately 60 engineering majors a year.

800+

Science, math, and engineering labs at Yale College and the graduate and professional schools.

93%

Admission rate for Yale College graduates to medical schools (national average 45%).

200+

Summer fellowships for undergraduate science and engineering students per year.

2,000+

Courses offered each year in 80 academic programs and departments.

100+

More than 100 science program alumni who graduated in the mid-80s and early 90s are now science faculty members at top universities.

1:1

Yale's Department of Computer Science and Engineering is a small, first-rate department that offers a range of courses in computer science and computer engineering.

Special Programs

Perspectives on Science and Engineering is a yearlong interdisciplinary course that introduces selected first-year students with exceptional math and science backgrounds to faculty and their research disciplines.

STARS (Science, Technology, and Research Scholars) Since 1995, Yale's nationally recognized STARS Program has promoted diversity in the sciences through mentoring, academic year study groups, and an original research-based summer program for freshmen and sophomores. Juniors and seniors have the opportunity to continue their research through the STARS II Program.

Graduate and Professional Schools

Graduate School of Arts & Sciences School of Engineering & Applied Science School of Forestry & Environmental Studies School of Medicine School of Nursing School of Public Health Yale Plus School of Architecture School of Art Divinity School School of Drama School of Law School of Management School of Music Institute of Sacred Music
Creating a Quantum Computer—One Artificial Atom at a Time

Robert Schoelkopf and Michel Devoret are creating basic building blocks for a future quantum computer. These computers of tomorrow, researchers say, will store, process, and transfer huge amounts of information unimaginably quickly and in spaces that are almost inconceivably small—visible only with an electron microscope. The two Applied Physics professors are among an elite group of experimentalists, working at the level of single microwave photons, tiny packets of light energy.

Schoelkopf is a former NASA engineer and Devoret was a director of research at the French Atomic Energy Commission before moving to Yale. At Yale, they are combining novel new designs for superconducting “artificial atoms” with tiny superconducting cavities to create electrical circuits that realize “microwave quantum optics on a chip,” said Steven Girvin, a Yale theoretical physicist who collaborates on their project. The two scientists have managed to squeeze the tiny photons into ultra-small cavities on a chip, akin to a regular computer microchip. They’ve also squeezed “artificial atoms” that can act as quantum bits—units to process and store quantum information—into the ultra-small cavities. The tiny packets of energy from the microwaves interact with these small atoms a million times more strongly than if the atoms had been in a standard bigger cavity.

The cavity acts as a “quantum bus” allowing quantum information to be sent from one atom to another, forming the basis of a new architecture, the beginnings of a future quantum computer. These computers of tomorrow, researchers say, will store, process, and transfer huge amounts of information unimaginably quickly and in spaces that are almost inconceivably small—visible only with an electron microscope. The two Applied Physics professors are among an elite group of experimentalists, working at the level of single microwave photons, tiny packets of light energy.

Schoelkopf is a former NASA engineer and Devoret was a director of research at the French Atomic Energy Commission before moving to Yale. At Yale, they are combining novel new designs for superconducting “artificial atoms” with tiny superconducting cavities to create electrical circuits that realize “microwave quantum optics on a chip,” said Steven Girvin, a Yale theoretical physicist who collaborates on their project. The two scientists have managed to squeeze the tiny photons into ultra-small cavities on a chip, akin to a regular computer microchip. They’ve also squeezed “artificial atoms” that can act as quantum bits—units to process and store quantum information—into the ultra-small cavities. The tiny packets of energy from the microwaves interact with these small atoms a million times more strongly than if the atoms had been in a standard bigger cavity.

The cavity acts as a “quantum bus” allowing quantum information to be sent from one atom to another, forming the basis of a new architecture, the beginnings of what someday the researchers expect will be a huge integrated circuit of quantum bits. One practical application for quantum computers is cryptanalysis. “If quantum computers can be built,” Girvin said, “they can very efficiently break certain types of codes.”

Portable Disease Detectors

Yale scientists have created nanowire sensors coupled with simple microprocessor electronics that are both sensitive and specific enough to be used for point-of-care disease detection. Using such detectors, says Tarek Fahmy, Yale associate professor of Biomedical Engineering, doctors could immediately determine which strain of flu a patient has, whether or not there is an HIV infection, or what strain of tuberculosis or E. coli bacteria is present. Currently, there are no electronic point-of-care diagnostic devices available for disease detection.

Fahmy and his colleagues see a huge potential for the system in point-of-care diagnostic centers in the United States and in developing countries where health care facilities and clinics are lacking. He says it could be as simple as an iPod-like device with changeable cards to detect or diagnose disease. Importantly, the system produces no false positives—a necessity for point-of-care testing. “Instruments this sensitive could also play a role in detection of residual disease after antiviral treatments or chemotherapy,” said Fahmy. “They will help with one of the greatest challenges we face in treatment of disease—knowing if we got rid of all of it.”

Creating a Quantum Computer—One Artificial Atom at a Time

Robert Schoelkopf and Michel Devoret are creating basic building blocks for a future quantum computer. These computers of tomorrow, researchers say, will store, process, and transfer huge amounts of information unimaginably quickly and in spaces that are almost inconceivably small—visible only with an electron microscope. The two Applied Physics professors are among an elite group of experimentalists, working at the level of single microwave photons, tiny packets of light energy.

Schoelkopf is a former NASA engineer and Devoret was a director of research at the French Atomic Energy Commission before moving to Yale. At Yale, they are combining novel new designs for superconducting “artificial atoms” with tiny superconducting cavities to create electrical circuits that realize “microwave quantum optics on a chip,” said Steven Girvin, a Yale theoretical physicist who collaborates on their project. The two scientists have managed to squeeze the tiny photons into ultra-small cavities on a chip, akin to a regular computer microchip. They’ve also squeezed “artificial atoms” that can act as quantum bits—units to process and store quantum information—into the ultra-small cavities. The tiny packets of energy from the microwaves interact with these small atoms a million times more strongly than if the atoms had been in a standard bigger cavity.

The cavity acts as a “quantum bus” allowing quantum information to be sent from one atom to another, forming the basis of a new architecture, the beginnings of what someday the researchers expect will be a huge integrated circuit of quantum bits. One practical application for quantum computers is cryptanalysis. “If quantum computers can be built,” Girvin said, “they can very efficiently break certain types of codes.”

Portable Disease Detectors

Yale scientists have created nanowire sensors coupled with simple microprocessor electronics that are both sensitive and specific enough to be used for point-of-care disease detection. Using such detectors, says Tarek Fahmy, Yale associate professor of Biomedical Engineering, doctors could immediately determine which strain of flu a patient has, whether or not there is an HIV infection, or what strain of tuberculosis or E. coli bacteria is present. Currently, there are no electronic point-of-care diagnostic devices available for disease detection.

Fahmy and his colleagues see a huge potential for the system in point-of-care diagnostic centers in the United States and in developing countries where health care facilities and clinics are lacking. He says it could be as simple as an iPod-like device with changeable cards to detect or diagnose disease. Importantly, the system produces no false positives—a necessity for point-of-care testing. “Instruments this sensitive could also play a role in detection of residual disease after antiviral treatments or chemotherapy,” said Fahmy. “They will help with one of the greatest challenges we face in treatment of disease—knowing if we got rid of all of it.”

Creating a Quantum Computer—One Artificial Atom at a Time

Robert Schoelkopf and Michel Devoret are creating basic building blocks for a future quantum computer. These computers of tomorrow, researchers say, will store, process, and transfer huge amounts of information unimaginably quickly and in spaces that are almost inconceivably small—visible only with an electron microscope. The two Applied Physics professors are among an elite group of experimentalists, working at the level of single microwave photons, tiny packets of light energy.

Schoelkopf is a former NASA engineer and Devoret was a director of research at the French Atomic Energy Commission before moving to Yale. At Yale, they are combining novel new designs for superconducting “artificial atoms” with tiny superconducting cavities to create electrical circuits that realize “microwave quantum optics on a chip,” said Steven Girvin, a Yale theoretical physicist who collaborates on their project. The two scientists have managed to squeeze the tiny photons into ultra-small cavities on a chip, akin to a regular computer microchip. They’ve also squeezed “artificial atoms” that can act as quantum bits—units to process and store quantum information—into the ultra-small cavities. The tiny packets of energy from the microwaves interact with these small atoms a million times more strongly than if the atoms had been in a standard bigger cavity.

The cavity acts as a “quantum bus” allowing quantum information to be sent from one atom to another, forming the basis of a new architecture, the beginnings of what someday the researchers expect will be a huge integrated circuit of quantum bits. One practical application for quantum computers is cryptanalysis. “If quantum computers can be built,” Girvin said, “they can very efficiently break certain types of codes.”
Saving Lives through Genetics

An amazing revolution is under way as it becomes possible to rapidly and cheaply sequence large portions of the human genome. The most common fatal diseases have underlying inherited components. Rapid advances in molecular genetics now make it possible to quickly and easily identify the genetic variants underlying these diseases, promising to transform the diagnostic and therapeutic approaches to these disorders.

Dr. Richard Lifton, Sterling Professor of Genetics, chair of the Department of Genetics at the Yale School of Medicine, and professor of Medicine, is one of the world’s leading experts and advocates of genome-wide analysis of human populations to find genetic links to diseases. He and Yale neurobiologist Dr. Murat Gunel recently discovered a genetic link to brain aneurysms, and their findings could lead to new tests to spot those at greatest risk. In addition, a postdoctoral fellow in Lifton’s lab, investigating the genetic causes of blood pressure variation, recently identified a previously undescribed syndrome associated with seizures, a lack of coordination, developmental delay, and hearing loss. The work illustrates the power of genetic studies not only to find causes of chronic ailments, but also to identify a common cause in a seemingly unrelated set of symptoms in different parts of the body.

“Our ability to unequivocally and rapidly define new syndromes and their underlying disease genes has progressed dramatically in recent years,” says Lifton. “A study like [the one identifying the new syndrome] would have taken years in the past, but was accomplished in a few weeks by a single fellow in the lab.” He says he hopes the research will not only help doctors identify people with the new syndrome but also lead to greater recognition that patients with apparently complicated syndromes may often have simple underlying defects that can be understood.

Ultimately, the ability to identify genes associated with human disease paves the way for “personalized medicine” in which treatments can be tailored to an individual’s specific genetic makeup.

"Free-Style" Geophysics and a Habitable Planet

“The links among plate tectonics, the geomagnetic field, the existence of oceans, and the composition of the air have profound implications for the habitability of a planet and the evolution of life,” says Jun Korenaga, professor of Geology and Geophysics. His project “How to Build a Habitable Planet: Estimating the Physics of Plate-Tectonic Convection on Earth” recently received Microsoft’s breakthrough research award given to encourage academic research that helps solve some of today’s most challenging societal problems.

"Understanding the physics of plate-tectonic convection in Earth’s mantle is one of the outstanding and most puzzling challenges in geosciences and planetary sciences,” says Korenaga. The self-described “free-style” geophysicist’s research spans mantle and core dynamics, theoretical geochemistry, and marine geophysics. He uses computer simulation to study the balance between the physical forces that cause movement in the surface plates of Earth. Korenaga’s work exemplifies how this long-standing mystery can be approached by addressing the fundamental physics question and formulating it as a quantitative mathematical problem.
Green Chemistry in Policy and Practice

Yale is easily one of the foremost centers in the world for green chemistry and green engineering. Indeed, “the father of green chemistry” is Yale chemist Paul Anastas. In 1991, when Anastas served as chief of the Environmental Protection Agency’s chemistry branch, he coined the term “green chemistry” to describe the design of safer chemicals and chemical processes to replace the use of hazardous substances. Later he led Yale’s Center for Green Chemistry & Green Engineering before being tapped by President Obama to return to the EPA.

One of Yale’s next generation of innovators in green chemistry and engineering is Julie Zimmerman, associate professor jointly appointed to the Department of Chemical and Environmental Engineering and Yale’s School of Forestry & Environmental Studies. Through her engineering research, Zimmerman is working toward the next generation of products, processes, and systems based on efficient and effective use of benign materials and energy to advance sustainability. To enhance the likelihood of successful implementation of these next-generation designs, she also studies the effectiveness of and barriers to current and potential policies developed to advance sustainability. Together these efforts represent a systematic and holistic approach to addressing the challenges of sustainability to enhance water and resource quality and quantity, to improve environmental protection, and to provide for a higher quality of life.

Zimmerman and her colleagues proved that certain countries and some U.S. states stand to benefit from the use of compact fluorescent lighting in the fight against global warming, while the use of such lighting in some areas could actually be more harmful to the environment. Zimmerman is also part of an interdisciplinary team developing design guidelines for safer chemicals to minimize or eliminate toxicity concerns from new molecules being developed and introduced to the market.

Hunting for New Phenomena with the World’s Largest Atom Smasher

The Large Hadron Collider—the world’s largest atom smasher—was built in collaboration with thousands of scientists from hundreds of universities across the globe, including Yale. Keith Baker, Sarah Demers, Tobias Golling, and Paul Tipton, professors of Physics at Yale, use the Large Hadron Collider to investigate a number of current mysteries in the present theory of particle physics. Baker participated in the recent discovery of what is likely the elusive Higgs boson. Dubbed the “God particle,” the Higgs boson explains why every other particle has mass and would provide the missing link in the Standard Model—our current theoretical understanding of particle physics. Many of the Yale team will be working to understand the properties of this new particle, including Demers, who will be searching for rare Higgs decays. Golling and Tipton are searching for new discoveries, motivated by, among other things, dark matter, that elusive substance which neither emits nor absorbs light but accounts for approximately 25 percent of the universe’s mass. The four particle physicists carry out their experiments using ATLAS, one of two general-purpose detectors at the Large Hadron Collider located at the CERN laboratory near Geneva, Switzerland. The Large Hadron Collider, which took nearly fifteen years to complete, was commissioned in 2008.

Improved Vaccines

The focus of professor of Immunobiology Ruslan Medzhitov’s research is the innate immune system, which alerts the host to infectious assaults and triggers a cascade of responses—known as the adaptive immune response—that is the basis for vaccine activity. Improved vaccines could be developed by injecting the immune system with disease antigens that are physically linked to particular polypeptide activators of the innate immune response. A Yale start-up, Vac Innate, is developing a high-throughput screening platform to identify these activators.
A New Class of Metals

Jan Schroers, professor of Mechanical Engineering, and his team have been exploring a class of materials called amorphous metals or bulk metallic glasses, BMGs, which can be molded like plastics and are more durable than silicon or steel. The team has created a process for making computer chips at the nano-scale that has a tendency to avoid crystallization when solidified. He and Themis Kyriakides, associate professor of Pathology and Biomedical Engineering, are working together to put the unique processibility of BMGs and their outstanding properties to the test. Their work targets three applications: bone replacement, soft tissue implants like stents, and surface patterning to program cellular response (synthetic membranes such as artificial kidneys).

Unlike most metals, BMGs have a tendency to avoid crystallization when solidified. It is their “amorphous” structure that yields many advantages including remarkable properties of high strength (three times that of steel), elasticity, corrosion resistance, and durability—all of which exceed the properties of currently used biomaterials. Most notable, however, is their unique processibility that allows them to be molded like plastics with nano-scale precision and complex geometries. This processing capability has only come with the recent emergence of thermo-mechanical forming, which decouples the fast-cooling process from the molding process, allowing the time needed for precise net-shaping.

Of course, the selection criteria for biomaterials include more than favorable mechanical and chemical properties and the ability to be precisely shaped—biocompatibility is an absolute necessity. “We knew we had a superior material over currently used implant materials, and we now have found out that we can indeed put it in the human body,” says Schroers.

Natural Proteins by Design

Scientists dream of the day when they can create designer proteins capable of inhibiting harmful interactions, modifying substrates, or guiding cellular machines to where they are needed within the body. Though that dream may be far down the road, Alanna Schepartz, Milton Harris Professor of Chemistry and professor of Molecular, Cellular, and Developmental Biology, took an important first step forward when she and her team created the first synthetic protein in the lab. “Creating artificial proteins is somewhat of a holy grail,” says Schepartz. “A fair number of people thought it would be impossible to synthesize a molecule that could come close to behaving like a natural protein that has benefited from billions of years of evolution.”

Schepartz’s team created a short β-peptide that assembles into an “octameric bundle” shape that exhibits all the traits of natural bundle proteins, but with some additional potential benefits. “Unlike natural peptides and proteins, β-peptides are not broken down by enzymes, not altered significantly by metabolism, and seem not to jump-start the immune system the way a foreign natural protein can,” Schepartz says. That means scientists may one day be able to design drugs with all the functions of natural proteins, but which won’t be broken down by the body.

From Lab to Start-Up.

Yale’s Office of Cooperative Research plays a huge role in guiding faculty and student innovations from the laboratory to the marketplace. More than 40 ventures commercializing technologies discovered in Yale laboratories have been launched in recent years.

- **Access Scientific**
  - Vascular access device
  - [www.accessscientific.com](http://www.accessscientific.com)

- **Achillion Pharmaceuticals**
  - Infectious disease therapeutics
  - [www.achillion.com](http://www.achillion.com)

- **Affomix (acquired by Illumina)**
  - Antibody screening technology
  - [www.illumina.com](http://www.illumina.com)

- **BioRelix**
  - Antibiotic discovery
  - [www.bioelix.com](http://www.bioelix.com)

- **C3 Sciences**
  - Cognition training software
  - [www.c3sciences.com](http://www.c3sciences.com)

- **CoolSpin LLC**
  - Cooling catheter for cardiothoracic surgery
  - [www.coolspine.com](http://www.coolspine.com)

- **Great Basin Corp.**
  - Point-of-care diagnostics for infectious diseases
  - [www.gbscience.com](http://www.gbscience.com)

- **Hadapt, Inc.**
  - High-speed data analytics
  - [www.hadapt.com](http://www.hadapt.com)

- **HistoRx**
  - Quantitative histopathology testing and diagnostics
  - [www.historx.com](http://www.historx.com)

- **JG Genetics**
  - Genetic tests
  - [www.jargerontics.com](http://www.jargerontics.com)

- **Koltan Pharmaceuticals**
  - Cancer therapeutics
  - [www.koltan.com](http://www.koltan.com)

- **MiraDs**
  - Cancer diagnostics
  - [www.mirads.com](http://www.mirads.com)
As a student at Yale you are situated on central campus, midway between Science Hill to the north, with its laboratory and classroom buildings, and the School of Medicine to the south. Both are just a ten-minute walk from central campus. Altogether that means hundreds of labs, each pursuing different kinds of research and easily accessible to where students live and work. Here you will find literally any kind of research that may interest you.

### Walking Times

<table>
<thead>
<tr>
<th>Distance</th>
<th>Lab/Building</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 min.</td>
<td>Bass Center to Sloane Physics Lab</td>
</tr>
<tr>
<td>4 min.</td>
<td>Gibbs Labs to Osborn Memorial Labs</td>
</tr>
<tr>
<td>8 min.</td>
<td>Old Campus to Becton Center</td>
</tr>
<tr>
<td>10 min.</td>
<td>Kline Biology Tower to Cross Campus</td>
</tr>
<tr>
<td>15 min.</td>
<td>Malone Center to School of Medicine</td>
</tr>
</tbody>
</table>

---

**Connected Campus.**

*(Designed for easy access)*
Building the Future.

(Investing in new facilities, fueling new discoveries)

A new era of discovery is changing lives for the better in every part of the globe—and Yale is prepared as few institutions are to advance knowledge and apply it to today's greatest challenges. Having recently concluded a decade-long, $1 billion program of expansion and renovation of STEM facilities, we continue to devote significant resources to strengthening Yale's capacity for interdisciplinary research in science, engineering, and medicine. Some of our newest buildings, initiatives, and student projects are featured here.

Kroon Hall (left) Kroon Hall, home to Yale's School of Forestry & Environmental Studies, completed in 2009. Certified LEED Platinum by the U.S. Green Building Council, it is a showcase of the latest developments in green building technology, a healthy and supportive environment for work and study, and a beautiful building that actively connects students, faculty, staff, and visitors with the natural world. Kroon is an anchor for long-term sustainable development of our Science Hill.

Center for Science and Social Science Information (above) CSSSI opened in 2012 in Kline Biology Tower on Science Hill. A collaboration between the University Library and ITS, it offers state-of-the-art information services in a technology-rich environment. Among its resources are computer workstations with display workstations and new collaborative technologies, and an on-site 180,000-volume print collection as well as an extensive and growing electronic collection. Librarian subject specialists and tech support staff offer high-level research support, including assistance with discipline-specific software.

Science Hill

From nuclear physics to new molecule synthesis, from ecosystem and conservation biology to genetic and optical investigations, Science Hill facilities foster cutting-edge, cross-disciplinary research.
Yale Engineering
It is an exciting time to be in Yale Engineering, with $50 million in funding for new faculty; increased support for undergraduate research opportunities, student associations, and entrepreneurship initiatives; and continued infrastructure growth. Whether it’s nanoscience, targeted drug delivery, or sustainability issues, our faculty and students are engaged in the most innovative research of our time.

Center for Engineering Innovation and Design
The new Yale Center for Engineering Innovation and Design is an 8,500-square-foot facility, with adjoining café and high-tech study space. It offers Yale students an unparalleled environment for collaborative design and innovation, with group work areas, meeting rooms, and fabrication facilities for metal, plastics, wood, biomedical materials, and electronic devices. It is an intellectual hub where people with common interests exchange ideas, learn from one another, and hone the skills that are needed to create engineering solutions to challenging, real-world problems.

"The center will empower Yale students to realize their creative vision," says director Eric Dufresne, John J. Lee Associate Professor of Mechanical Engineering and Materials Science. "The center will help students bridge the gap between formal course work and the real challenges that face society."

Courses, workshops, and projects at the center require the application of a broad array of engineering principles and bring together students and faculty in all of Yale’s engineering majors—biomedical, chemical, electrical, environmental, and mechanical. But the center is open to students in all majors, for both academic and extracurricular projects. “Innovation is catalyzed by people with diverse backgrounds working together to attack the same problem,” says Dufresne.

Anchored in the outstanding liberal arts tradition of Yale College, the center promises a unique design and engineering experience.
Yale Medicine
On Yale’s medical campus, leading thinkers in fields from genetics to biomedical engineering to nanoscience, as well as researchers and physicians working on cancer, neurological disorders, and cardiovascular disease, break new ground every day. You can take classes taught by medical school faculty, work in their labs, shadow doctors on their rounds, and volunteer at Yale-New Haven Hospital. And the research opportunities available to undergraduates at the School of Medicine are extraordinary.

Cellular Neuroscience, Neurodegeneration, and Repair Program
MB&B major Ryan Park (left) is working toward a joint B.S./M.S. degree. His project uses biochemical and high-resolution imaging methods to study the role of a protein called dynamin in membrane trafficking.

Department of Cell Biology
MCDB major Henrietta Bennett (below) is working on a project focused on the association between telomeres and the nuclear envelope—a hot topic in the aging field.

MCDB major Sunny Jones studies the mechanisms of SNAREs, proteins that fuel the trafficking of vesicles through the Golgi apparatus of the cell.

Departments of Dermatology, Neurodegeneration, and Genetics
MB&B major Jonathan Fisher is studying genetic mutations that lead to skin cancer.

Department of Immunobiology
MCDB major Christopher Chow is working on the cells that control the immune system’s reaction to viruses.

Department of Anesthesiology
BME-Economics major Michelle Tseng is working on the implantation of engineered lung tissue into rats, with the long-range goal of creating a tissue-engineered lung.

Departments of Biomedical Engineering, Therapeutic Radiology, and Pediatrics
BME major Kavitha Anandalingam is working on the use of polymer nano-particles to deliver DNA constructs for gene therapy of cystic fibrosis.

Departments of Internal Medicine, Diagnostic Radiology, and Biomedical Engineering
BME major Nimit Jain is developing mathematical models to analyze MRS data to track metabolism in the human liver.

“You don’t have to be premed to take advantage of the great opportunities and great mentors in laboratories at the medical school. I work in a cell biology lab studying interactions between chromosomes and the nuclear envelope in fission yeast. Our work is medically relevant, but it’s also interesting from the perspectives of general biology and biophysics. After all, good science is collaborative and interdisciplinary. My research at the medical school and my relationships with my lab members have been the most rewarding and productive of my experiences at Yale.”

MCDB major Henrietta Bennett
West Campus

At its West Campus, Yale is building something entirely new: a distinctive scientific community that facilitates interactions between Science Hill and medical school scientists and engineers. Just a seven-minute shuttle ride from central campus, West Campus provides the physical and conceptual space for innovative collaboration. Six broadly multidisciplinary research institutes are being developed here, to tackle problems and develop solutions that extend beyond traditional departmental and disciplinary boundaries.

BioDesign Institute
Connecting cell biology and engineering, focusing specifically on the design principles that unite living and synthetic materials at the nanoscale.

Cancer Biology Institute
Focusing on fundamental and translational cancer biology, driving research through the pursuit of novel therapeutics.

Chemical Biology Institute
Emphasizing research in synthetic biology and products biosynthesis; the pursuit of novel, biologically active small molecules is the backbone of the institute.

Energy Sciences Institute
Focusing on the challenges facing the environment and energy sectors, from alternative and sustainable fuels to carbon mitigation technologies and energy storage.

Microbial Diversity Institute
The first of its kind, focused on discovering, characterizing, and harnessing the microbial world by investigating microbe-based processes in the environment and in health.

Systems Biology Institute
Focusing on the biology of regulatory networks, particularly the biology of gene regulatory networks that underlie the identity and life of cells, providing a springboard for the integration of mathematical theory and bioinformatics.

“I've been doing my senior research project in assistant professor Farren Isaacs's lab in the Systems Biology Institute. The Isaacs Lab is focusing on extending the results of a technology called multiplex automated genome engineering (MAGE). MAGE can be used as a powerful genome editing tool. My project is designed to increase the efficiency of MAGE, making possible an in vitro gene synthesis platform. Each time I come to the lab I'm amazed by the sheer acreage of West Campus. The opportunities for growth here are extraordinary. I can’t wait to see what it looks like in a few years.”

Mathematics and MCDB major
Josh Pan
A remarkable commitment to and capacity for teaching undergraduates sets Yale apart from other great research universities. To get a good sense of just how integrated undergraduate teaching and world-class research are here, one only needs to compare the overlap in faculty names between those making research breakthroughs and those listed in the Yale course catalog. Faculty say some of their best research ideas are often sparked in the classroom. Students say they are amazed by the incredible access they have to people who really are changing the world through science and engineering. We asked some of these great teachers and researchers why Yale is an extraordinary place to study and practice science and engineering.

**Q** What sets the Yale science and engineering experience apart from those at other research universities?

**Kyle Vanderlick** “The very things that make Yale a great place to conduct research also make the University a great place to learn. Students have access to world-class scholars, state-of-the-art facilities, and a collaborative culture supporting exploration and personal development. In short, engineering is about pushing the boundaries of what mankind can do through technological innovation. This simply cannot be done without a broad understanding of humanity, nor without the rich set of communication skills necessary to convey new and complex ideas. This is what engineering at Yale is all about.”

**Mark Saltzman** “There’s something different about rigorous training in engineering embedded in a liberal arts tradition. One of the features of a liberal arts education is that you’re required to take courses in all sorts of different things. For instance, we think it’s important that our students study a foreign language as well as the social sciences. Taking different kinds of classes creates a different sort of curiosity. Our students bring that curiosity to the kinds of questions they’re asking and trying to answer in science classes and engineering research labs. It’s certainly a different experience than at other places I’ve been where, if you’re an engineering or science major, you’re studying the same kinds of things in the same kind of way that other students around you are studying. You’re also living with other science and engineering majors. Here, students are living among future historians, future economists, English majors, and political science majors, all bringing their own brands of thought to questions and ideas.”

**Q** How are classroom science and engineering different from research in the lab?

**Meg Urry** “What we teach in science classes are tools and a way of thinking. The tools are basic concepts like gravity, forces, acceleration, motion, thermodynamics, and fluids that are manifested everywhere in nature. In the lab, we apply those concepts to different aspects of nature. In my own
Meg Urry  “It’s like the difference between learning to speak French well (understanding basic physics concepts) and reading French literature (working in a physics lab). You have to do the first in order to do the second.”

Charles Schmuttenmaer  “Classroom learning is absolutely essential for success in research. Like Meg, I think of it as filling a toolbox with all sorts of tools. Some are rather generic, like hammers and saws, and some are quite specialized, like a pulley puller or a plumber’s basin wrench. Not every project will need every tool, but the more you have in your toolbox, the better equipped you’ll be to tackle something new. The daily practice of science is characterized by creatively and innovatively solving research problems with all the tools at one’s disposal. By definition, you’re doing things in a research setting that have never been done before. That’s what makes it research, after all. I think the creative aspects of scientific research are often overlooked or underestimated.”

Mark Saltzman  “That is the obvious difference— that in the classroom you’re talking about accumulated knowledge and ideas that have been tested and known in lots of different ways, so it’s not so controversial or open-ended. Almost everything you do in a research laboratory is open-ended, and there is not any one way to get from point A to point B. Sometimes you don’t even know what point B is. You’re probing to find it in different ways and you don’t know what the outcome will be.”

Joan Steitz  “It’s like the difference—that in the classroom you’re doing things in a tradition of knowledge. From there you put together a hypothesis and test that hypothesis. But this is always done by people talking to each other; people evaluating each other’s data. Yale is particularly good at teaching students how to communicate at a high level with faculty, postdocs, and research subjects.”

Meg Urry  “They need to be smart, motivated, persistent, and good communicators. No one of those qualities is sufficient in and of itself—they need all four. They have to want to discover new knowledge; they have to master the tools of discovery; they need to be able to finish a project, however

Joan Steitz  “The old idea of a scientist being an iconoclast who has a brilliant idea and then goes into the lab and does an experiment all by him- or herself, looks at the data, and then comes to a lofty conclusion is so faulty. Students here learn how communal the scientific enterprise is.”

John Harris  “We are looking for students who are excited about science and are motivated to learn new concepts and make new discoveries. They need to think independently and for the benefit and success of the research project and team. In terms of skills, they need to have the ability to understand new concepts, to clearly articulate questions and ideas, and to communicate their questions, ideas, and concepts to others.”

Meg Urry  “Communication skills are essential. In experimental science you’re starting from a tradition of knowledge. From there you put together a hypothesis and test that hypothesis. But this is always done by people talking to each other; people evaluating each other’s data. Yale is particularly good at teaching students how to communicate at a high level with faculty, postdocs, and research subjects.”

Joan Steitz  “Communication skills are essential. In experimental science you’re starting from a tradition of knowledge. From there you put together a hypothesis and test that hypothesis. But this is always done by people talking to each other; people evaluating each other’s data. Yale is particularly good at teaching students how to communicate at a high level with faculty, postdocs, and research subjects.”

Mark Saltzman  “That is the obvious difference—that in the classroom you’re talking about accumulated knowledge and ideas that have been tested and known in lots of different ways, so it’s not so controversial or open-ended. Almost everything you do in a research laboratory is open-ended, and there is not any one way to get from point A to point B. Sometimes you don’t even know what point B is. You’re probing to find it in different ways and you don’t know what the outcome will be.”

Joan Steitz  “Communication skills are essential. In experimental science you’re starting from a tradition of knowledge. From there you put together a hypothesis and test that hypothesis. But this is always done by people talking to each other; people evaluating each other’s data. Yale is particularly good at teaching students how to communicate at a high level with faculty, postdocs, and research subjects.”

Meg Urry  “They need to be smart, motivated, persistent, and good communicators. No one of those qualities is sufficient in and of itself—they need all four. They have to want to discover new knowledge; they have to master the tools of discovery; they need to be able to finish a project, however

John Harris  “We are looking for students who are excited about science and are motivated to learn new concepts and make new discoveries. They need to think independently and for the benefit and success of the research project and team. In terms of skills, they need to have the ability to understand new concepts, to clearly articulate questions and ideas, and to communicate their questions, ideas, and concepts to others.”

Meg Urry  “They need to be smart, motivated, persistent, and good communicators. No one of those qualities is sufficient in and of itself—they need all four. They have to want to discover new knowledge; they have to master the tools of discovery; they need to be able to finish a project, however
Professor Saltzman is the Molecular Physiology Professor of Cellular and Environmental Engineering; Engineering and Chemical & Engineering & Applied Science; Dean of the School of Engineering & Applied Science; he has published three books and more than 200 research papers, and he has ten patents in his fields. He has also received two Teaching Materials Awards from the Whitaker Foundation for his work on textbooks in tissue engineering and biomedical engineering principles for freshmen.

Recent Courses
Physiological Systems; Frontiers of Biomedical Engineering.

John W. Harris
Professor of Physics; Chair of the Yale Science Council; former Director of the A.W. Whitaker Foundation Nuclear Structure Laboratory
Professor Harris is the group leader of Yale’s Relativistic Heavy Ion Group. Relativistic heavy ion physics is of international and interdisciplinary interest to nuclear physics, particle physics, astrophysics, condensed matter physics, and cosmology. The primary goal of this field of research is to recreate in the laboratory a new state of matter, the quark-gluon plasma, which is predicted by the Standard Model of particle physics to have existed ten millionths of a second after the Big Bang (origin of the universe) and may exist in the cores of very dense stars. The experiments are carried out at the Large Hadron Collider in Geneva, Switzerland.

Recent Courses
Quantum Physics and Beyond (for nonscientists); Modern Physical Measurement

Beta Vanderlick “Engineering today at Yale is very different from its inception in the mid-1900s. We’re not building bridges, we’re curing diseases, cleaning and protecting our environment, computing at the quantum scale, and solving the energy crisis. More than an education in technological innovation, Yale engineering is a curriculum for leadership in the twenty-first century.”

and by the joy of finding the answers. As an undergraduate, because my role in labs had always been helping someone else on that person’s project, I didn’t understand how exciting it was to have my own project. I became completely hooked after that. In my lab, I make sure every undergraduate has his or her own project from the start. Even though they are working closely with somebody who knows more and who obviously cares whether their project succeeds or not, it is completely up to the undergraduate as to whether that project succeeds. It’s theirs.”

KYLE VANDERLICK “Quantitative reasoning, teamwork, and the habit of breaking complex problems into manageable pieces—these are the skills needed to be a successful engineer. Engineering is a purposeful and powerful way of thinking. It prepares students for fulfilling careers in engineering right after college, but it is also a broad and foundational education that will serve students interested in business, medicine, law, and for an endless list of life pursuits in today’s technologically driven world.”

Mark Saltzman “I have a lot of faith in the power of human connection—that somehow people use the examples that they see in order to envision their own path. That is why it’s so important for working scientists and students to be in the classroom together. Students can get the facts from any number of places, but in the classroom they have human examples of interesting ways to approach problems, human examples of paths they might want to replicate in some way.”

Meg Urry “I agree. The process of doing science is a bit like an apprenticeship. We show them how to ask a question, how to find the answer, and then we help them learn to present their results to others. And along the way, I hope we also show them that professors are mortals, that our profession is one we love and enjoy, and that we can combine work with a full and satisfying life.”

Based on your personal experience of being an active research scientist, what do you think students need in order to be successful?

Joan Steitz “What every scientist who succeeds comes to appreciate is that there is really something very special about discovering something—no matter how small it is—that nobody else has ever known. When you first develop that film or look under the microscope and discover something new, you’re the only person in the universe with that knowledge. You have to be turned on by the curiosity to ask new questions and by the joy of finding the answers. As an undergraduate, because my role in labs had always been helping someone else on that person’s project, I didn’t understand how exciting it was to have my own project. I became completely hooked after that. In my lab, I make sure every undergraduate has his or her own project from the start. Even though they are working closely with somebody who

many snags they may encounter; and they need to be able to communicate their results to others, preferably in an articulate and exciting way.”

Q

W. Mark Saltzman
Goizueta Foundation Professor of Biomedical Engineering and Chemical & Environmental Engineering; Professor of Cellular and Molecular Physiology
Professor Saltzman is the founding chair of Yale’s Biomedical Engineering department. His research interests include drug delivery to the brain, materials for vaccine delivery, and tissue engineering; he has published three books and more than 200 research papers, and he has ten patents in his fields. He has also received two Teaching Materials Awards from the Whitaker Foundation for his work on textbooks in tissue engineering and biomedical engineering principles for freshmen.

Recent Courses
Physiological Systems; Frontiers of Biomedical Engineering.

John W. Harris
Professor of Physics; Chair of the Yale Science Council; former Director of the A.W. Whitaker Foundation Nuclear Structure Laboratory
Professor Harris is the group leader of Yale’s Relativistic Heavy Ion Group. Relativistic heavy ion physics is of international and interdisciplinary interest to nuclear physics, particle physics, astrophysics, condensed matter physics, and cosmology. The primary goal of this field of research is to recreate in the laboratory a new state of matter, the quark-gluon plasma, which is predicted by the Standard Model of particle physics to have existed ten millionths of a second after the Big Bang (origin of the universe) and may exist in the cores of very dense stars. The experiments are carried out at the Large Hadron Collider in Geneva, Switzerland.

Recent Courses
Quantum Physics and Beyond (for nonscientists); Modern Physical Measurement

Kyle Vanderlick “Engineering today at Yale is very different from its inception in the mid-1900s. We’re not building bridges, we’re curing diseases, cleaning and protecting our environment, computing at the quantum scale, and solving the energy crisis. More than an education in technological innovation, Yale engineering is a curriculum for leadership in the twenty-first century.”

and by the joy of finding the answers. As an undergraduate, because my role in labs had always been helping someone else on that person’s project, I didn’t understand how exciting it was to have my own project. I became completely hooked after that. In my lab, I make sure every undergraduate has his or her own project from the start. Even though they are working closely with somebody who

many snags they may encounter; and they need to be able to communicate their results to others, preferably in an articulate and exciting way.”

Based on your personal experience of being an active research scientist, what do you think students need in order to be successful?

Joan Steitz “What every scientist who succeeds comes to appreciate is that there is really something very special about discovering something—no matter how small it is—that nobody else has ever known. When you first develop that film or look under the microscope and discover something new, you’re the only person in the universe with that knowledge. You have to be turned on by the curiosity to ask new questions and by the joy of finding the answers. As an undergraduate, because my role in labs had always been helping someone else on that person’s project, I didn’t understand how exciting it was to have my own project. I became completely hooked after that. In my lab, I make sure every undergraduate has his or her own project from the start. Even though they are working closely with somebody who

many snags they may encounter; and they need to be able to communicate their results to others, preferably in an articulate and exciting way.”

Based on your personal experience of being an active research scientist, what do you think students need in order to be successful?

Joan Steitz “What every scientist who succeeds comes to appreciate is that there is really something very special about discovering something—no matter how small it is—that nobody else has ever known. When you first develop that film or look under the microscope and discover something new, you’re the only person in the universe with that knowledge. You have to be turned on by the curiosity to ask new questions and by the joy of finding the answers. As an undergraduate, because my role in labs had always been helping someone else on that person’s project, I didn’t understand how exciting it was to have my own project. I became completely hooked after that. In my lab, I make sure every undergraduate has his or her own project from the start. Even though they are working closely with somebody who

many snags they may encounter; and they need to be able to communicate their results to others, preferably in an articulate and exciting way.”

Based on your personal experience of being an active research scientist, what do you think students need in order to be successful?

Joan Steitz “What every scientist who succeeds comes to appreciate is that there is really something very special about discovering something—no matter how small it is—that nobody else has ever known. When you first develop that film or look under the microscope and discover something new, you’re the only person in the universe with that knowledge. You have to be turned on by the curiosity to ask new questions and by the joy of finding the answers. As an undergraduate, because my role in labs had always been helping someone else on that person’s project, I didn’t understand how exciting it was to have my own project. I became completely hooked after that. In my lab, I make sure every undergraduate has his or her own project from the start. Even though they are working closely with somebody who

many snags they may encounter; and they need to be able to communicate their results to others, preferably in an articulate and exciting way.”

Based on your personal experience of being an active research scientist, what do you think students need in order to be successful?

Joan Steitz “What every scientist who succeeds comes to appreciate is that there is really something very special about discovering something—no matter how small it is—that nobody else has ever known. When you first develop that film or look under the microscope and discover something new, you’re the only person in the universe with that knowledge. You have to be turned on by the curiosity to ask new questions and by the joy of finding the answers. As an undergraduate, because my role in labs had always been helping someone else on that person’s project, I didn’t understand how exciting it was to have my own project. I became completely hooked after that. In my lab, I make sure every undergraduate has his or her own project from the start. Even though they are working closely with somebody who

many snags they may encounter; and they need to be able to communicate their results to others, preferably in an articulate and exciting way.”

Based on your personal experience of being an active research scientist, what do you think students need in order to be successful?

Joan Steitz “What every scientist who succeeds comes to appreciate is that there is really something very special about discovering something—no matter how small it is—that nobody else has ever known. When you first develop that film or look under the microscope and discover something new, you’re the only person in the universe with that knowledge. You have to be turned on by the curiosity to ask new questions and by the joy of finding the answers. As an undergraduate, because my role in labs had always been helping someone else on that person’s project, I didn’t understand how exciting it was to have my own project. I became completely hooked after that. In my lab, I make sure every undergraduate has his or her own project from the start. Even though they are working closely with somebody who

many snags they may encounter; and they need to be able to communicate their results to others, preferably in an articulate and exciting way.”
“While it’s true that not every senior project can turn into a successful start-up company, I implore engineering majors to embrace the opportunity to do a design project and apply a ridiculous amount of persistence to it, because there’s nothing like the feeling of having made this thing that no one else in the world has ever made before.”

It All Started at Yale
For my senior project as an electrical engineering major, I created a three-dimensional projection system. The system exploited the persistence of human vision by projecting one-dimensional images very quickly onto a rotating screen so that a viewer’s eyes perceived an aggregate 3-D image.

Investor Search
A three-year investor search followed. It was the height of the dot-com boom. Investors were pumping huge amounts of money into the craziest of dot-com ventures, but no one was interested in work with three-dimensional images that could potentially help surgeons operate on cancer patients. Meanwhile, my parents were buying me groceries, and my team of engineers was living off McDonald’s Bag of Burgers special—six for $4. Things looked bleak.

Why Yale
Everything you hear and read about Yale’s commitment to undergraduates is completely true. You get a front-row ticket to theory and practice. Best of all, your future opportunities, whether you become a professional engineer or not, really are right at your fingertips.

Persistence and Patent
I knew I was onto something. By the end of the summer after graduation, my projector was displaying 3-D images of Homer Simpson’s head, an air traffic scene, and the letter “Y.” This made believers out of a bigger circle of people and I earned a patent for the invention.

Today
I work at Optics for Hire, which acquired the 3-D patents from my company, Actuality Systems, in 2009. OFH invents or improves optics-based products. For example, for GE we made a handheld light-gun that uses diffusion to inspect giant turbine blades. For medical device companies, we’ve created optical blood inspectors and complex lenses. People call us for everything from “greentech” (LED lighting) to video game technologies to laser-based measurement systems.

#1 Pivotal Moment
By the time May of my senior year arrived, I could project a checkerboard of dots in the air. No one seemed particularly impressed except my adviser, Professor Peter Kindlmann, who gave me exceptional guidance, and the department chair, Professor Mark Reed, who pledged departmental financial support.

#2 Pivotal Moment
Things finally started to turn around. I met a journalist known for chronicling the happenings of Silicon Valley. After watching an image of the HIV virus rotating in space projected from my 3-D prototype, he wrote an article for the Wall Street Journal on the invention and my difficulty finding funding. Soon I had so many offers I had to turn investors away.

Yale undergraduates studying science and engineering are ideally positioned for top Ph.D. programs and career success. Here, three graduates trace the major steps they took to get where they are today.

Gregg Favalaro
Hometown Teaneck, NJ
Yale Class of 1996
B.S. Electrical Engineering
M.S. Engineering Sciences
Harvard University 1998
Current Principal, Optics for Hire (OFH)

Paths to Success.
(From high school to Ph.D., mapping the routes)
“The best thing about Yale is the students. It was great to learn about the ultimate fate of the universe in a cosmology class, but it was even better to sit down at dinner with some philosophy majors to sort out what it all meant.”

**#1 Pivotal Moment**
I realized I wanted to be a scientist while I was writing a paper on *Hamlet* for an English class freshman year. The crux of my argument was that a character’s importance could be determined by the number of total lines he spoke. When I recognized that while I was writing a paper on *Hamlet*, I decided the sciences would be the best fit for me.

**Valuable Takeaways**
What a fantastic preparation for a career in science Yale was for me. Not only were the science classes and research opportunities extremely strong, but I developed my communication and leadership skills. For example, helping to organize the Northeast Conference for Undergraduate Women in Physics, a three-day event with 100+ participants, taught me teamwork and how to finish projects with strict deadlines – two essentials for success in a scientific career.

**Current Work**
I am a Ph.D. candidate at University of Chicago. I am interested in astrostatistics – using Bayesian methods, time series analysis, machine learning, and other techniques to maximize the science we can obtain from astronomical data sets, both large and small. My current research focuses on optimizing the planet detection algorithm used by the Kepler mission.

**Why Yale**
Yale students stood out because of their sense of humor and enthusiasm for both academics and everything else. I aspired to be like them.

**Early Inspiration**
When I was the captain of my high school Science Bowl team, my coach encouraged me to pursue my interest in astrophysics. He helped me find some great introductory textbooks and inspired me to study astronomy and physics in college. The extra studying also helped my team win the state championship.

**Why Yale**
Yale stood out to me because of their sense of humor and enthusiasm. I realized I wanted to be a scientist even to Shakespeare, I decided the sciences would be the best fit for me.

**Pivotal Moment**
My senior project adviser, Professor Charles Bailyn, was hugely influential in my path to grad school. He helped me identify a high-impact research project on black holes that was a perfect fit to my interests. Through close collaboration with him (we met at least once a week), I learned how to assess promising new research directions, think critically about papers, justify assumptions, and write convincingly about my work. These skills have really jump-started my research program in grad school.

**Current Work**
My work in the Department of Chemistry at Stanford focuses on molecular dynamics in liquid phase systems using ultrafast spectroscopy.

**Why Yale**
I came to Yale when undergraduate science was being re-invigorated through programs like Perspectives on Science. Seeing Yale’s interest in nurturing undergraduates in science appealed to me. Other schools also offered great programs, but Yale seemed most interested in me as a young scientist. My experiences later proved that to be true.

**High School**
I began looking at the world through the eyes of chemistry and physics, which was an empowering experience that drove me toward studying science later.

**Novel Research**
In my research group, I had my own project and worked individually under my adviser. I was not simply performing busywork for a graduate student. Professors at Yale take undergraduate education and research very seriously. They try to find a good niche for an undergraduate to contribute to novel research while learning an immense amount.

**Grad School Dividend**
I have a much larger breadth of knowledge than most other graduate students in my department, particularly because of my course work and research at Yale. I was encouraged to take courses that spanned a wide range of scientific topics. That has paid large dividends down the line.

“There are lots of technologies out there waiting for the right moment to really impact the planet in a positive way. I want to position myself to help those technologies come alive.”
Lives.

Freshman Diaries. Yale's newest students chronicle a week in the first year and give some advice.

Anatomy of a Residential College. Yale's residential college system is unparalleled and enhances the pleasure of attending Yale like nothing else. Far more than dormitories, our 12 residential colleges have been called "little paradises"—endowed with libraries, dining halls, movie theaters, darkrooms, climbing walls, ceramics studios, and many other kinds of facilities—and each has its own traditions. Each college is home to a microcosm of the undergraduate student body as a whole. (For science and engineering majors this means that your friends will be actors and economists, musicians and linguists, artists and historians as well as biologists and physicists.) With their resident deans and masters, affiliated faculty, legendary intramural sports teams, and Master's Teas with world leaders, the residential colleges are an incomparable experience.

Bright College Years. In many ways friendship defines the Yale experience. One student sums it up: "It's about the people, not the prestige."

Studies.

A Liberal Education. Freedom to think. Yale's educational philosophy, more than 75 majors, the meaning of breadth, and some startling numbers.

College Meets University. An undergraduate road map to the intersection of Yale College and the University's graduate and professional schools.

Blue Booking. Yale is one of the only universities in the country that lets you test-drive your classes before you register during what's known as "shopping period." Preparing to shop is a ritual in and of itself, signaled by the arrival online of the Blue Book, Yale College's catalog of more than 2,000 courses.

Think Yale. Think World. Over and above ordinary financial aid, Yale awards more than $6 million for fellowships, internships, and relief from summer earnings obligations in order to guarantee that every student who wishes will be able to work or study abroad. Eight Elies define "global citizen" and share their pivotal moments abroad.

Connect the Dots. From start-up capital and internships to top fellowships and a worldwide network of alumni, Yale positions graduates for success in the real world.

Places.

Inspired by Icons. Why architecture matters. Among the nation's oldest universities, Yale is the one most firmly defined by its architecture.

State of the Arts. From the digital to the classical, Yale's spectacular arts options.

The Daily Show. A slice of Yale's creative life during one spring weekend.

Nine Squares. The modern university, the cosmopolitan college town.

Elm City Run. On a run from East Rock to Old Campus, one student explains why New Haven is the perfect size.

Here, There, Everywhere. Fourteen Yalies, where they're from, and where they've been.

Pursuits.

Bulldog! Bulldog! Bow, Wow, Wow! Playing for Yale—The Game, the mission, the teams, the fans, and, of course, Handsome Dan.

Eavesdropping on Professors. Why being an amazing place to teach makes Yale an amazing place to learn.

Two, Three, Four, Five Heads Are Better Than One. Study groups and why Yalies like to learn together.

Next-Gen Knowledge. For Yalies, one-of-a-kind resources make all the difference.

Noah Webster Lived Here. Bumping into history at Yale.

Shared Communities. Yale's tradition of Cultural Houses and affinity organizations and centers.

ELiterati. Why Elies are just so darned determined to publish.

Sustainable U. Where Blue is Green.

Political Animals. Today's and tomorrow's leaders converge at the Yale Political Union, the nation's oldest debating society.

Keeping the Faiths. Nurturing the spiritual journeys of all faiths.

Difference Makers. Through Dwight Hall, Yale's Center for Public Service and Social Justice, students find their own paths to service and leadership in New Haven.

*In this book we have introduced you to what makes Yale an extraordinary place to be a scientist and engineer. Yet a whole world of lives, studies, places, and pursuits beyond science and engineering awaits you at Yale that we haven’t begun to address. As Physics Intensive major Michelle Trickey says, “You can’t get this confluence of people or the culture of inquisitiveness while having fun very many other places. It’s just special here.” A Yale historian once defined what makes it so special this way: “Yale is at once a tradition, a company of scholars, a society of friends.” We would like you to have your own guide to that tradition, that company, and such friendships. (You can request or download our insider’s guide to all that is Yale at: admissions.yale.edu.)

Here is a taste of what you will find.

(A world unlike any other)
The Good News about the Cost of Yale.

If you are considering Yale, please do not hesitate to apply because you fear the cost will exceed your family’s means. Yale College admits students on the basis of academic and personal promise and without regard to their ability to pay. All aid is need-based. Once a student is admitted, Yale will meet 100% of that student’s demonstrated financial need. This policy, which applies to U.S. citizens and to international students alike, helps to ensure that Yale will always be accessible to talented students from the widest possible range of backgrounds.

The Financial Aid Office is committed to working with families in determining a fair and reasonable family contribution and will meet the full demonstrated need of every student for all four years. Over the past ten years, the percentage of undergraduate students qualifying for need-based scholarships from Yale has increased from 37% to 57%.

The average annual grant from Yale today to its students receiving financial aid is approximately $38,000, or about two-thirds of the cost of attendance. These changes have eliminated the need for educational loans.

Yale also provides undergraduates on financial aid with grant support for summer study and unpaid internships abroad based on their level of need.

If you get into Yale, we feel sure that cost will not be a barrier in your decision to attend.

Jeff Brenzel, Dean of Undergraduate Admissions

> Yale Financial Aid Awards do not include loans. 100% of a family’s financial need is met with a Yale grant and opportunities for student employment.

> Families with annual income below $65,000 (with typical assets) are not expected to make a financial contribution toward a student’s Yale education.

> 100% of the student’s total cost of attendance will be financed with a Financial Aid Award from Yale.

> Families earning between $65,000 and $200,000 annually (with typical assets) contribute a percentage of their yearly income toward a student’s Yale education, on a sliding scale that begins at 1% and moves toward 20%.

> Yale awards all aid on the basis of need and will meet the full demonstrated financial need.

Yale's aid is divided into two parts: a grant to help meet the student’s demonstrated financial need, and work-study, which, combined with the grant, equals the student’s full demonstrated financial need. Students qualifying for financial aid receive both types of aid. Yale pays the full demonstrated financial need of all aid recipients, so the needs of students with other sources of financial aid (e.g., loans, scholarships) will be adjusted to avoid any overlap.

Yale uses a holistic review process that considers all aspects of a family’s financial situation.

Yale Net Price Calculator

http://admissions.yale.edu/financial-aid

Visit http://admissions.yale.edu/financial-aid

Creative Team

Jeff Brenzel, B.A. 1979, Dean of Undergraduate Admissions
Peter Chemery, Associate Director
Ayashka Fernando, B.S. 2008, Senior Assistant Director
Steven M. Girvin, Deputy Provost for Science & Technology; Eugene Higgins Professor of Physics & Applied Physics
Jeffrey Quinlin, B.A. 2003, Deputy Director of Undergraduate Admissions
William A. Sograves, Associate Dean for Science Education, Yale School of Engineering and Applied Science; Bruce C. Deel, Professor of Engineering
Design: Pentagram
Michael Bierut, Pentagram. Senior Critic in Graphic Design at the School of Art, and the Office of the University Printer
Photography: Lisa Kaysel M.S.A. 2000, Lecturer in Photography at the School of Art
Text: Andrea Jarrel
Additional photography and images: Robert Batey; Wen Deng and Haifan Lin; Sarah Forrest Photography; Photographers Inc., et al. (July 2012); fig. 3; Robert Lisak; Michael Markovitch, et al.; MAKK, Rush University Medical Center; Jan Schorrier; Harold Shapiro; Manuscripts and Archives/Yale University Library; Galey Zucker

Yale University is committed to education judgments concerning the admission, education, and employment of individuals upon their qualifications and abilities and affirmatively seeks to attract to its faculty, staff, and student body qualified persons of diverse backgrounds. In accordance with this policy and as delineated by federal and Connecticut law, Yale does not discriminate in admissions, educational programs, or employment against any individual on the basis of that individual’s sex, race, color, religion, age, disability, or national or ethnic origin; nor does Yale discriminate on the basis of sexual orientation or gender identity or expression.

In accordance with federal law, the University prepares an annual report on participation rates, financial aid, and other information regarding men’s and women’s intercollegiate athletic programs. Upon request to the Director of Athletics, 20 North Campus, 203-432-1864, the University will provide its annual report to any student or prospective student. The Equity in Athletics Disclosure Act report is also available online at http://ope.ed.gov/athletics.

In accordance with federal law, the University prepares the graduation rate of degree-seeking, full-time students in Yale College. Upon request to the Office of Undergraduate Admissions, PM Box 20814, New Haven CT 06520-8144, 203-432-9300, the University will provide its annual report to any applicant for admission.

For all other matters related to admission to Yale College, please call the Admissions Office, 203-432-9300.

The Work of Yale University*

Yale’s work is widely carried on in the following schools:

Yale College

Established 1701

Graduate School of Arts and Sciences

School of Business

School of Divinity

School of Education

School of Engineering and Applied Science

School of Forestry and Environmental Studies

School of Music

School of Nursing

School of Architecture

School of Drama

School of Management

*For more information on the schools of Yale University, with a listing of their degree-granting programs, please see www.yale.edu/bulletin.

Statement of ownership, management, and circulation

Owned and published by Yale University, a nonprofit corporation existing under and by virtue of a charter granted by the General Assembly of the Colony and State of Connecticut, and located in the town of New Haven in the State of Connecticut. Editor-in-Chief, editorial and business: E. Golden, Jr. Professor of Management; Eugene Higgins Professor of Physics & Applied Science; Jan Schorrier; Harold Shapiro; Manuscripts and Archives/Yale University Library; Galey Zucker

The work of Yale University, on a sliding scale that varies with family’s means. Yale College to pay. All aid is need-based. Once a student is admitted, Yale will meet 100% of that student’s demonstrated financial need. This policy, which applies to U.S. citizens and to international students alike, helps to ensure that Yale will always be accessible to talented students from the widest possible range of backgrounds.

The Financial Aid Office is committed to working with families in determining a fair and reasonable family contribution and will meet the full demonstrated need of every student for all four years. Over the past ten years, the percentage of undergraduate students qualifying for need-based scholarships from Yale has increased from 37% to 57%.

The average annual grant from Yale today to its students receiving financial aid is approximately $38,000, or about two-thirds of the cost of attendance. These changes have eliminated the need for educational loans.

Yale also provides undergraduates on financial aid with grant support for summer study and unpaid internships abroad based on their level of need.

If you get into Yale, we feel sure that cost will not be a barrier in your decision to attend.

Jeff Brenzel, Dean of Undergraduate Admissions

> Yale Financial Aid Awards do not include loans. 100% of a family’s financial need is met with a Yale grant and opportunities for student employment.

> Families with annual income below $65,000 (with typical assets) are not expected to make a financial contribution toward a student’s Yale education.

> 100% of the student’s total cost of attendance will be financed with a Financial Aid Award from Yale.

> Families earning between $65,000 and $200,000 annually (with typical assets) contribute a percentage of their yearly income toward a student’s Yale education, on a sliding scale that begins at 1% and moves toward 20%.

> Yale awards all aid on the basis of need and will meet the full demonstrated financial need.

Yale’s aid is divided into two parts: a grant to help meet the student’s demonstrated financial need, and work-study, which, combined with the grant, equals the student’s full demonstrated financial need. Students qualifying for financial aid receive both types of aid. Yale pays the full demonstrated financial need of all aid recipients, so the needs of students with other sources of financial aid (e.g., loans, scholarships) will be adjusted to avoid any overlap.

Yale uses a holistic review process that considers all aspects of a family’s financial situation.

Yale Net Price Calculator

http://admissions.yale.edu/financial-aid

Visit http://admissions.yale.edu/financial-aid
Science and Engineering at Yale.*

* A Guide to Undergraduate Research, Teaching, and Resources